skip to main content


Search for: All records

Creators/Authors contains: "Kendall, M. R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The AMPLIFY project, funded through the NSF HSI Program, seeks to amplify the educational change leadership of Engineering Instructional Faculty (EIF) working at Hispanic Serving Institutions (HSIs). HSIs are public or private institutions of higher education enrolling over 25% full-time undergraduate Hispanic or Latinx-identifying students [1]. Many HSIs are exemplars of developing culturally responsive learning environments and supporting the persistence and access of Latinx engineering students, as well as students who identify as members of other marginalized populations [2]. Our interest in the EIF population at HSIs arises from the growing body of literature indicating that these faculty play a central role in educational change through targeted initiatives, such as student-centered support programs and the use of inclusive curricula that connect to their students’ cultural identities [3]–[7]. Our research focuses on exploring methods for amplifying the engineering educational change efforts at HSIs by 1) making visible the experiences of engineering instructional faculty at HSIs and 2) designing, implementing, and evaluating a leadership development model for engineering instructional faculty, thereby 3) equipping and supporting these faculty as they lead educational change efforts. To achieve these goals, our project team, comprising educational researchers, engineering instructional faculty, instructional designers, and graduate students from three HSIs (two majority-minority and one emerging HSI), seeks to address the following research questions: 1) What factors impact the self-efficacy and agency of EIF at HSIs to engage in educational change initiatives that encourage culturally responsive, evidence-based teaching within their classrooms, institutions, or beyond? 2) What are the necessary competencies for EIF to be leaders of this sort of educational change? 3) What individual, institutional, and professional development program features support the educational change leadership development of EIF at HSIs? 4) How does engagement in leadership development programming impact EIF educational leadership self-efficacy and agency toward developing and using culturally responsive and evidence-based approaches at HSIs? This multi-year project uses various qualitative, quantitative, and participatory research methods embedded in a series of action research cycles to provide a richer understanding of the successes and needs of EIF at HSIs [8]. The subsequent design and implementation of the AMPLIFY Institute will make visible the features and content of instructional faculty development programs that promote educational innovation at HSIs and foster a deeper understanding of the framework's impact on faculty innovation and leadership. 
    more » « less
  2. Engineering identity is an attractive lens being used by engineering education researchers to help understand the factors contributing to student retention and persistence in engineering. However, few studies have linked pedagogical approaches for developing an identity to their impact on engineering identity development. This research paper investigates the difference in students’ engineering identity, engineering performance/competence, engineering interest, recognition in engineering, and affect towards six professional engineering practices in two difference engineering departments: a traditional program that implicitly supports engineering identity formation and a non-traditional program that explicitly supports engineering identity formation. Survey data was collected from a total of 184 students (153 from the traditional department and 31 from the non-traditional department). Using independent samples t-tests, results show that engineering identity was higher for students in the traditional department than for students in the non-traditional department. However, students in the non-traditional department showed statistically significantly higher levels of collaboration compared to the traditional department. This work contributes to the ongoing conversation about engineering identity development by beginning to explore the pedagogical approaches that impact students’ engineering attitudes. Implications of results are discussed. 
    more » « less
  3. https://peer.asee.org/engineering-identity-development-of-hispanic-students 
    more » « less
  4. ISBN 9781510849419 
    more » « less
  5. Identity, or how people choose to define themselves, is emerging as an attractive explanation for who persists in engineering. Many studies of engineering identity build off of prior work in math and science identity, emphasizing the academic aspects of engineering. However, affect towards professional practice is also central to engineering identity development. This paper describes the methods used to create a new survey measure of individuals’ affect toward elements of engineering practice. We followed the item generation, refinement, and instrument validation steps required for psychometric validation of a new survey measure. We generated items deductively using the literature on engineering professional skills and practice and inductively based on interviews with practicing engineers, engineering graduate students, and engineering undergraduate students. We blended the inductively and deductively derived item lists to create a list of initial items for the measure. We circulated this list of items to a set of engineering and professional identity experts to establish face validity and made modifications based on their feedback. The final list included 34 items. These 34 items were administered in a questionnaire survey in the fall of 2016 to 1465 engineering undergraduates in three majors at two institutions. We conducted an exploratory factor analysis (EFA) and established internal consistency using Cronbach’s alpha on a subset of the analytical sample data (n=384). The resulting factors fit our a priori assumption of the factors theorized to characterize affect towards engineering professional practice. Using the remaining data (n=904), we conducted a confirmatory factor analysis on the reduced set of items resulting from EFA. The results indicate an emergent factor structure for affect towards elements of engineering practice. 
    more » « less
  6. Identity, or how people choose to define themselves, is emerging as an explanation for who pursues and persists in engineering. Recent developments in the study of engineering identity, including studies of math and science identity, tend to emphasize the academic aspects of engineering without considering aspects of professional practice central to the development of an engineering identity. This paper outlines the methods used to create a new survey measure: affect toward elements of engineering practice. We followed the item generation, refinement, and instrument validation steps required for psychometric validation of a new survey measure. Through this process a final list of 34 items was administered in a survey in the fall of 2016 to engineering undergraduates. We conducted an exploratory factor analysis and established internal consistency using Cronbach’s alpha on a subset of the data sample (n=384). The resulting factors reflect key elements of affect towards engineering professional practice. 
    more » « less